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ABSTRACT 

The calculating power and speed of microcomputers has rapidly increased during the last few years, while their cost has 
decreased almost as fast. As a result, it has become possible for most chromatographers to calculate rapidly the individual elution 
band profiles of the components of mixtures by integrating the differential mass balance equation of chromatography. It has 
become possible to tind out rapidly what would be the effect of possible modifications of the experimental parameters. For 
conventional columns having a few thousand plates, the computation takes between a few seconds and a few minutes, provided a 
performing algorithm is used. 

Many different procedures are available for 
the calculation of the band profiles in overloaded 
elution chromatography. These algorithms are 
generally based on the numerical solution of the 
mass balance equation written for the equilib- 
rium-dispersive model of chromatography [ 1,2]. 
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where C and q are the equilibrium concentra- 
tions in the mobile and stationary phases, respec- 
tively; F is the ratio of the volumes of mobile 
and stationary phases in the column; u is the 
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linear velocity of the mobile phase; t is the time 
and z is the length. The above model incorpo- 
rates the different phenomena that cause band 
broadening into a single factor, the apparent 
dispersion coefficient, D,,. This model describes 
very well the behavior of real chromatographic 
systems. 

For the classical non-linear isotherms, the 
equilibrium-dispersive model has no analytical 
solution. The only way to solve eqn. 1 is through 
numerical algorithms. Several computational 
procedures have been developed by using a finite 
element [3] or a finite difference [4] method. The 
finite element method gives a more accurate 
solution, but requires much longer computation- 
al time. Among the finite difference methods, 
the Craig model (see ref. 5) and the Rouchon 
algorithms (see ref. 4) are widely used. The 
Craig model requires much longer computational 
time, but it is a good alternative for the calcula- 
tion of band profiles in gradient elution, which 
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cannot be performed with the Rouchon algo- 
rithm [2]. 

In a finite difference method, the continuous 
plane (z,t) is replaced by a grid of (AZ, At) 
increments, and the partial differential equation 
(eqn. 1) is replaced by a difference equation. 
This causes a truncation error, function of AZ 
and At. This truncation error results in an addi- 
tional dispersion term, of numerical origin 
[1,2,4]. When using the Rouchon algorithm, the 
right hand side of the mass balance equation is 
replaced by zero 

(2) 

where G = (C + Fq)lu. The values of the time 
and length increments are chosen such a way 
that the numerical error caused when replacing 
eqn. 2 by the finite difference equation is identi- 
cal to the dispersion described by the apparent 
dispersion coefficient in eqn. 1. 

At_ 2H(k’+l) 2t, 
Az=H - u =N 

where H is the height equivalent to a theoretical 
plate and k’ is the retention factor. 

Among the several possible combinations of 
difference terms [2], the Rouchon algorithm 
chooses a forward difference term for the first 
term of eqn. 2, and a backward difference term 
for the second term. This results in the following 
“forward-backward” difference equation 

ci,,, - ci, 
AZ 

+ Gi,-Gi,-’ 
At =’ (4) 

Successive numerical solutions of this finite dif- 
ference equation for increasing. values of the 
space increment, and then the time increment 
allow the calculation of the concentration at each 
point of the grid, by using the initial and bound- 
ary conditions. For the numerical solution of the 
equilibrium-dispersive model of chromatog- 
raphy, the numerical integral of the mass balance 
equation is calculated on the whole 0 s z 6 L 
length and 0 s t s t, time interval, where t, > t,. 

However, the sample band occupies only a 
fraction of the column even at high values of the 
loading factor, and an important part of the 
computation time is wasted by carrying calcula- 
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Fig. 1. The zone occupied by the band of a migrating 
component in the column. The upper solid line indicates the 
front of the band at L, = 1%; the dotted line shows the front 
at L, = 50%; the lower solid line shows the rear end of the 
band in both cases. 

tions in the section of the column where the 
concentration of the sample is negligible or zero. 
In Fig. 1, the area between the two solid lines 
indicates the territory occupied by the sample 
band as a function of time at a small loading 
(loading factor L, = l%), for a single component 
elution. These two lines show the trajectories of 
the band front and rear. This figure demon- 
strates that in this case, and during the whole 
elution, the majority of the column is only 
occupied by the inert eluent and the calculations 
should not be performed for this section of the 
column. The area between the dotted line and 
the lower solid line represents the progressive 
expansion of the section occupied by the sample 
for a very high value of the loading factor 
(50%). It can be seen that the band front 
propagates much faster in this last case (its 
trajectory follows the dotted line), and that the 
component begins to elute just around 0.2 t,. 
On the other hand, the diffise rear of the band 
travels at an almost constant velocity, indepen- 
dently of the loading factor (lower solid line). 
Because of the high efficiency of the column 
(N = 5000), the effect of back mixing is negli- 
gible. Even in this last case, still less than half of 
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the plane is to be considered for the integration 
of the mass balance equation. 

The calculation of the band profile can be 
significantly faster if we integrate only between 
the boundaries shown in Fig. 1. The gain in 
computational time is somewhat less than indi- 
cated by the decrease in the size of the scanned 
territory, between the dotted and continuous 
lines compared to the total area of the rectangle, 
as the positions of the front and rear boundaries 
of the band should be monitored at the end of 
each loop to determine the boundaries of the 
next loop. 

With the conventional implementation of the 
Rouchon algorithm, the computational time is 
proportional to the square of the number of 
theoretical plates, since both the time and length 
increments are inversely proportional to N (see 
eqn. 3), so the number of grid points is propor- 
tional to N*. When the mass balance equation is 
integrated only within the boundaries of the 
migrating band, there is a strong correlation 
between the loading factor and the computation- 
al time, since the higher the load, the larger the 
section of the column which is occupied by the 
band. 

The computing power available in personal 
computers has increased tremendously in the last 
few years. Current models are less expensive and 
much faster than those available a few years ago 
[6]. With the new generation of 80486 and soon 
Pentium (Intel, CA, USA)-based personal 
computers, the calculation of chromatographic 
band profiles can be performed easily, within a 
reasonably short time. Calculations were per- 
formed on a 33MHz 486DX IBM clone compu- 
ter, to test the time needed by programs based 
on the different finite difference methods. The 
computer programs were written in Pascal and 
compiled under Turbo Pascal version 6.0 (Bor- 
land, CA, USA). For the calculation of the 
single-component chromatogram, k’ = 4 and a 
Langmuirian behavior were assumed. For the 
calculation of the separation of the components 
of a binary mixture, the following values of the 
retention factor ki = 4, the separation factor (r = 
1.25, and the relative concentration 3:l were 
chosen, and competitive Langmuir behavior was 
assumed. 

TABLE I 

THE COMPUTATIONAL TIME NEEDED BY DIFFER- 
ENT APPROACHES FOR THE SIMULATION OF THE 
BAND PROFILE OF ONE COMPONENT 

N Computational time (s) 

Original Modified Rouchon 
Rouchon 

L,= 1% L,=5% L,=20% L,=50% 

loo 0.2 0.2 0.2 0.2 0.2 
200 0.8 0.5 0.6 0.6 0.6 
500 4.8 2.8 3.0 3.4 3.6 

loo0 18.7 10.1 11.2 12.9 13.8 
2ooo 74.4 37.7 42.9 50.1 54.1 
5000 458.7 223.1 259.3 306.2 331.8 
8000 1168.3 557.7 652.5 773.2 838.8 

In Table I, we compare the results obtained 
for the calculation of the elution band profile of 
a single component peak with the conventional 
and the modified Rouchon algorithms at differ- 
ent loading factors. Typical calculation times are 
around 10-14 s at N = 1000, and 9-14 min at 
N = 8000, depending on the value of L,. The 
modified algorithm always requires less computa- 
tional time. However, the time gain depends 
strongly on the loading factor of the sample, and 
slightly on the column efficiency. The computa- 
tion time increases more slowly than N*, since at 
higher efficiency the dispersion effect is smaller, 
and for this reason the region of the z,f space 
where the numerical integration should be car- 
ried out is smaller. For this reason, the modified 
algorithm is expecially attractive at high column 
efficiencies. At the low loading factor L, = l%, 
only 54% of the original time is needed when the 
column efficiency is N = 1000, and 48% at N = 
8000. As we increase the loading factor to L, = 
50%, the computational times also increase, to 
nearly three quarters of the time required by the 
original Rouchon algorithm. 

For the calculation of individual band profiles 
in the case of binary separations (Table II), the 
time gain is somewhat larger than for the calcula- 
tion of single component band profiles. When 
using the modified algorithm, the required 
computational time (20-30 s) is 40-64% of the 
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TABLE II 
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THE COMPUTATIONAL TIME NEEDED BY DIFFERENT APPROACHES FOR THE SIMULATION OF THE 
SEPARATION OF A BINARY MIXTURE 

N Computational time (s) 

Craig Original 
Rouchon 

Modified Rouchon 

L,=l% L,=5% L, = 20% L, = 50% 

loo 24.5 0.5 0.3 0.3 0.3 0.3 
200 87.7 1.9 1.0 1.1 1.3 1.3 
500 486.0 11.9 5.8 6.3 7.1 7.7 

1000 1815.1 46.7 21.0 23.6 27.6 30.0 
2oocl _ 184.3 78.5 90.6 107.7 117.3 
5ooo - 1132.9 461.0 553.8 655.3 729.0 
8ooo - 2888.3 1155.7 1232.9 1662.0 1819.5 

original time at N = 1000. This time becomes 
20-30 min at N = 8300, with a gain of 4043%. 
This may seem surprising because the empty 
regions are smaller in the case of a mixture than 
with a single component, but much computing 
time is saved by not calculating the profile of a 
component in the regions where the other one is 
pure, and by calculating the competitive iso- 
therm only in the mixed region. 

The calculation of individual band profiles in 
the case of binary separations was also carried 
out with the Craig algorithm (Table II). The 
results show that the Craig method requires 
computation times which are typically about 40 
times longer than the conventional Rouchon 
algorithm. As explained previously [l], this is 
because the Craig algorithm requires, in each 
individual loop, the calculation of the composi- 
tion of both phases in the plate, from its total 
content. The Rouchon algorithm does not re- 
quire this time consuming operation. 

In Fig. 2, we show a logarithmic plot of the 
calculation time required for the simulation of 
binary separations, using the Craig, the Rouch- 
on, and the modified Rouchon algorithms. From 
the slope of these lines, we can determine the 
dependency of the execution time on the plate 
number. The results show that for the Rouchon 
algorithm, when calculating either single com- 
ponent or individual band profiles for binary 
mixtures, the time is proportional to N’.98. For 

the modified algorithm, the slopes correspond to 
N’.90 at L, = l%, N’.91 at L,= 5%, N'.95 at 
L, = 20%, and N’.97 at L, = 50%. 

The study of the influence of the experimental 
parameters on the separation, production rate 
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Fig. 2. The execution time (s) needed for the simulation of 
binary separations by the different finite difference methods. 
Dash-dotted line = Craig algorithm; solid line = original 
Rouchon method; dashed line = modified Rouchon method 
at L, = 50% ; dotted line = modified Rouchon method at L, = 
1%. 
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and recovery yield obtained in preparative chro- 
matography, and to a certain extent the optimi- 
zation of these parameters have become access- 
ible to most scientists who can now begin to 
perform “computer experiments” in order to 
limit the number of actual experiments needed. 
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